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Summary 
 
Current computer operating systems architectures are not well suited for this new coming world of 
connected devices, known as Internet of Things (IoT), for multiple reasons: poor communication 
performances in both point-to-point and broadcast cases, poor operational reliability and network 
security, excessive requirements both in terms of processors power and memory sizes leading to too 
high an electrical power consumption. We introduce a new computer operating system architecture 
well adapted to connected devices, from the most modest to the most complex, and more generally 
able to tremendously raise the input/output capacities of any communicating computer. This 
architecture rests on the principles of the Von Neumann hardware model and is composed of two 
types of asymmetric distributed containers, which communicate by message passing. We describe the 
sub-systems of both of these types of containers, where each sub-system has its own scheduler, and 
a dedicated execution level. 
 

What is the Architecture of an Operating System? 
 
There are a number of general theories on “systems”, each giving its own definition of what a “system” 
is. We will be using the simple definition stating that a “system” is a “set of entities talking through 
interfaces (and according to protocols)". We will consider here, that in the case of a computer 
operating system, what are respectively called “entities” and “interfaces” in that definition are what are 
usually called “sub-systems” and “APIs” in computer speak. What we will be calling “architecture” is a 
description of these sub-systems and of its APIs. The description of a sub-system will be that of its 
scheduler, of the scheduler's modes of context switching, of its performance, but also of the services 
provided by the sub-system. The interfaces between the different sub-systems will be “procedural” or 
using “message passing” (Fig. 1): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 - The “system” API organization 
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Why introduce a new architecture? 
 
The architecture of the Multics system was among the most ambitious computer operating system 
architectures. Its definition started in 1964, and it can be considered finished in 1972, the year of the 
publication of an article titled Multics – the first seven years (we are leaving out the implementation of 
the system, which went on after the article was published). The following sentence comes from the 
article's conclusions: 
 
In closing, perhaps we should take note that in the seven years since Multics was proposed, a great 
many other systems have also been proposed and constructed; many of these have developed similar 
ideas. In most cases, their designers have developed effective implementations which are directed to 
a different interpretation of the goals, or to a smaller set of goals than those required for the complete 
computer utility. 
 
This sentence turned out to be prophetic, because well after 1972, numerous computer operating 
system architectures are still influenced by that of Multics, to such a point that certain architectural 
traits will be passed down from generation to generation, although their use will be long gone due to 
the evolution of the hardware and of the use of computers. 
 
Recall that the first machine used to develop Multics, the General Electric Model 654, had at most 
1024 kilo-words of central memory, with each word being 36 bits (for a total of 4.5 megabytes), had up 
to 4 processors, each capable of executing 500,000 instructions per second. It was the size of a very 
large room. By comparison, a modern smartphone has 500 times more memory, and 1000 times more 
processing power. The smallest systems-on-a-chip for IoT are the size of the smallest coins, have 0.5 
megabytes of memory and can run 2,000,000 instructions per second. The use of a smartphone, or of 
any IoT has therefore nothing to do with that of the General Electric 654, which allowed a few tens of 
users to perform scientific computing, or to develop Multics using slow and loud teleprinters. 
 
In the following paragraphs, we will analyze some of the downsides of architectural traits inherited 
from a long time ago, and ill-suited to modern communicating machines. We cannot overemphasize 
the fact that the consequences are not the result of a particular implementation, but rather of the 
architectures themselves. The past decade has seen a number of projects coming from developers 
whose aims were to rewrite part or all of existing architectures, without achieving significant gains. We 
will end this article by introducing a new operating system architecture meant for IoT and for 
communicating computer machines. In the following of this text we will use the term of communicating 
machine for naming machines using richer I/Os than a simple IoT device, that is to say using 
communication links, but also being able to process and store real time data flows. 
 

Telecommunication and Input/Output Problems 
 
We will distinguish three types of data flows which often exhibit telecommunication performance 
problems: high bandwidth point-to-point flows, high bandwidth broadcast flows, and low bandwidth 
flows of infrequent broadcast messages. In a more general manner, all input/outputs of our connected 
devices and computers are suffering of serious performances issues, more specifically file systems. 
We will proceed by pointing out five architectural deficiencies which account for the performance 
problems. Some of these deficiencies are so prevalent that they have driven the introduction of 
palliative hardware solutions which are often very expensive. 
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Almost all existing operating systems exhibit poor performance as soon as protocol stacks such as 
HTTP/TCP/IP meet sustained flows nearing half of the transmission bandwidth. To see this, one only 
needs to start streaming an HD video through a broadband Internet connection to a PC. When the 
streaming is started, a waiting animation is always shown, for up to a few seconds, even though the 
video should start playing instantly. Then, sometimes the video will pause, which should not occur. In 
that case, novices blame the PC, the network or the server of being too slow. Actually, the terminals' 
operating systems are to blame for these hiccups; that can easily be proved by replacing the terminal 
by a device with a suitable operating system. Now, on the same connection, the same files located on 
the same server can be played without problems. For a number of users however, DSL TV is not good 
enough, driving the telecommunications operators to replace copper wire infrastructure by fiber too 
early given the investments made.   
 
The set-top box operating systems also show poor performance when receiving broadcast streams, 
both by cable or by terrestrial and satellite antennas. If it is possible to record on a hard drive a single 
TV program, without experiencing too many glitches, recording 7 or 8 is nigh impossible. The total 
data flow of 8 high definition videos is only 16 megabytes per second, and the slowest of disks, at 
5400 rotations/minute, have a data rate of 80 megabytes per second when correctly used. To cope 
with these deficiencies of the terminal operating systems, hard-drive manufacturers sell highly 
expensive models whose rotation speed is of 10,000 rotations/minute or more, and whose firmware is 
specially modified for video recording. 
 
The most energy efficient home-automation radio protocols use small broadcast messages, which are 
not repeated. For instance, there are small electrical switches which broadcast exactly one small 
message over the radio. Although the speed is only 115,200 bauds, some systems can sometimes 
randomly lose a few bytes of the message making it unusable, even though the hardware is fully able 
to receive them without any loss. Although the radio protocols were specially designed to limit the 
electronics for a modem directly connected to an asynchronous serial port, the radio modems 
manufacturers are driven to add a small system-on-a-chip, whose sole purpose is to store the bytes 
received for the few milliseconds that are sometimes required by the operating systems to take them 
into account. 
 
These problems are caused by multiple architectural weaknesses, which combine and add up. Among 
them, the five most egregious are the high context switching times, the useless data copies, the 
excessive data buffering, overly general file systems, and lastly, inappropriate hardware interruption 
handling mechanisms. Once again, these are not implementation problems of these operating 
systems, but rather problems of the architectures themselves. The five issues are presented in further 
detail below. 
 

Excessive Context Switching Times 
The context switching time is the time spent at every transition from one activity to another, that is the 
time needed by the operating system to perform ad-hoc actions. The architectural choices of what has 
to be done at every context switch determines the time it takes: whether to change the address space 
or not, whether to change the stack or not, and the extent of the modifications to the internal tables of 
the system. We purposefully use the term of “activity”, rather than “task” or “thread”. In fact – and this 
is an important architectural design decision – there exists a technique called finite state automaton 
engine, which is not very widespread in the software world because it is difficult to master, but which 
nonetheless allows for context switching in virtually no time by eliminating the notions of task and 
threads. We will see later how to gainfully use it. 
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Useless Data Copying 
Useless copies in the central memory of the machine can occur with certain operating systems, 
because, as a result of the isolation mechanisms of the tasks and the system itself, copying is the only 
data transfer method between two tasks or between a task and the system itself. Architectural design 
decisions are the sole cause. 
 

Excessive Data Buffering 
Buffering consists in accumulating an amount of data before even starting their processing. Often, 
these buffers are found to be 200 to 10,000 times too large and are in the megabytes or tens of 
megabytes rather than kilobytes. That's why users who start streaming must wait multiple seconds 
before seeing the first image even appear: the data begins to arrive from the server as soon as the 
request is made, but only when megabytes of video data have arrived does the video decoding begin. 
One may ask why such large buffers are used, causing such long wait times. There are in fact two 
causes for this. The first is the operating system context switching times; using buffers a thousand 
times smaller means a thousand fold increase in number of context switches by unit of time, which 
leads to a system collapse as soon as the activities are organized as tasks, no matter how 
“lightweight”. The second is an implementation issue. Many binary data flow parsers are unable to 
stop their work at any point in the input flow, but only at certain points, such as at the beginning of a 
new image. These parsers can only be started when a buffer contains an amount of data at least 
equal to the largest possible compressed image size. This second point is not an architectural defect 
in and of itself. The architect having identified that the overly coarse parsers are a cause of system 
collapse can choose to integrate critical features in the system itself or in its libraries, so that they can 
be well implemented and optimized. With this, it is clear what the benefit is obtained by specializing an 
operating system: providing optimized business-specific functionality to developers, which they cannot 
optimize sufficiently due to a lack of time. Moreover, modern hardware sometimes comes with 
hardware parsers which developers don't use or under-use because of the complications this entails. 
The integration of all the parsers for high bit rate flow allows for the use of such hardware support. It is 
important to realize that using more powerful processors would not solve anything, because it would 
not diminish the context switching costs by a factor 1000 or 10,000 and would do nothing to reduce 
the number of bytes needed before starting these parsers. This last point is of utmost importance, 
because it explains why it is absurd to always increase the processing power of our smartphones: this 
extra power is of no use, because that was never the source of the sluggishness. And because of it, 
the battery life goes down. In fact, video decoding is the only reason why there are 8 cores in a cell 
phone, function for which there are dedicated processors (DSPs) which can reduce the power draw by 
a factor ten compared to software decoding on an eight-core processor. 
 

Ill-Suited File systems 
To be clear, the term “file system” from a strict point of view refers to the organization of data on a 
physical support. A file system is labelled “general file system” when it is both capable of containing a 
large number of small files as well as large files. In its general acceptation, which we will use, “file 
system” also refers to the operating system components which implement and maintain this 
organization. For the same disk data organization specification, such as FAT 32, there are multiple 
ways to maintain this organization, and the methods chosen will have impacts greater than the 
organization itself. Depending on the use-case, file system strategies will favor small files by allowing 
fast creation and destruction or will benefit the throughput for large files. In the case of communicating 
machines simultaneously receiving large bit rate data flows, it will be necessary to use file systems 
well-adjusted to that use case, where the movements of the disk's read-and-write head are minimized. 
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Poor interrupt handling 
Modern electronics, including the smallest Systems on a Chip used for IoT, all have interrupt 
controllers allowing nested interrupts. Software can configure the priority of each interrupt, and when 
two interrupts arrive nearly at the same time, the handling code for the first one can be interrupted if 
the priority of the second one is greater. The software must assign the greatest priorities to the 
shortest and most frequent handlers, and the lowest priorities to the longest and rarest handlers. That 
way a long handler will be interrupted by short ones, and no latency is induced in the handling of the 
frequent interrupt, which leads to the maximum speeds. A short handler cannot be interrupted by a 
long one, but this is of no importance. Of course, the short handler codes must be carefully optimized, 
and will not perform slow calls to the system. No interrupt handling can call a blocking function, such 
as grabbing a semaphore. Certain architects consider that the considerable power afforded by the 
modern processors eliminates the need to make use of the interrupt priorities, and that it is not a 
problem to call slow system procedures from interrupt handlers even though simple order of 
magnitude computations prove the contrary. This is the reason why certain operating systems, even 
when run on powerful processors lose the last bytes of small radio messages transmitted at 115,200 
bauds: if a UART has a 16-byte deep FIFO, it can be filled in 1.5 milliseconds, and the following bytes 
will be lost if the interrupt handler is not run during this time period. In the case of a communicating 
operating system, which because of its job, is exposed to sustained high interrupt rates, the interrupt 
handling must be performed swiftly and cannot be postponed and placed on a run queue, because 
doing so only increases the amount of ineffective activities in the system, increases the latencies, and 
worsens the problems due to interrupt misses. 
 

Safety problems 
In the case of developer workstation operating systems, the system must be fully protected from 
application bugs during the testing phase, no matter how expensive the protections are. Certain 
systems go so far as to protect components of the operating system or the drivers by automatically 
stopping the failing piece of software. An operating system meant for communicating machines is not 
designed to be used for its own development as was Multics, or to run text editors and compilers. In 
addition, in embedded communicating objects, it would be absurd to stop the software components 
allowing precisely the communication, thereby isolating the device. It is in fact better to restart the 
system. Most importantly, what matters in the end is the safety of the operation of the whole 
communicating machine, which is a combination of hardware, operating system and application 
software. 
 
As far as the operating system is concerned, the safety of its operation is guaranteed by a large 
number of automated, off-line checks. Each component of the system must be submitted to checks 
called “unit tests”; the component is tested alone and in isolation of the other components. A major 
issue is the comprehensiveness of the test coverage, that is the guarantee that all possible code paths 
have been explored at least once during the tests. For this last point, the architecture chosen for the 
operating system is not without consequence. In particular, the use of the previously mentioned finite 
state automaton engine technique lets one automatically detect if test coverage is complete or not. 
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As far as the applications are concerned, the choice of suitable architectures can also be essential, 
especially for the smallest of IoT devices. Let's consider two examples: when the language used to 
implement an application is compiled to machine code, it is impossible to prevent the application from 
inappropriately accessing its own data, and it is expensive to limit its address space in order to isolate 
the code, the system data and the peripheral registers. With architecture called “language-based 
computers”, the combination of the hardware and its operating system do not offer any other choice 
than a single interpreted language for the development of the applications. It becomes impossible for 
an application to overwrite its own data, the code or data of the system, and it can't access the 
peripheral registers. 
 

Security problems 
 
The protection of the data collected or stored on connected devices, but also the integrity of the 
software of the object makes up what we will call the “security”. Surprisingly, certain architects 
consider that security is not an architectural concern. It is as if it were possible to secure an operating 
system after the fact, by adding “security layers” and whose implementation as also outside the scope 
of the architect's responsibility. To illustrate, it is as if it were possible to draw up the plans for a 
building without taking account its security, to finish the construction, and only then try and achieve a 
high level of security by adding surveillance systems and access controls. When building a bunker or 
simply a locker room, the architect must from the design stage ban windows, add sufficiently thick 
walls, and use strong materials. 
 
It behooves the architect to design a system which can start without relying on a shell. The 
architecture should by design prevent the execution of unauthenticated contents, prevent a user from 
consenting to disable security mechanisms. And of course, the architecture should allow for the 
replacement of open source telecommunications stacks by proprietary codes, of which must be 
required to come with automated test with extensive coverage. 
 

Frugality and Scaling Problems 
 
IoT must be frugal, both in terms of energy consumption as well as communication bandwidth. The 
architecture of the operating system impacts the power consumption, from the moment it allows a 
reduction in required memory sizes, and when it lets the processor clock remain low and even stop 
completely, which is only possible if the system can restart quickly, typically in less than a millisecond. 
For IoT of the smaller kind, communicating using a low bandwidth radio, software updates can be 
realized on a component by component basis, in order to reduce the update sizes, which is only 
possible if the architecture was designed for this. From this point of view, the Language-based 
Computer architecture is particularly well suited. Indeed, the natural functional decoupling is strong in 
that case: the interpreter itself is an independent component, each library is an independent 
component, and the interpreted application is another. It is easy to add an independent version 
number to each of the blocks, allowing true upgrade of a single component, without needing to 
upgrades the others which tends to happen with compiled languages. Because of a single function 
address table, it is possible to upgrade the functions of a library one by one, without needing to 
change more than one address in all the code, the address in the function table of the interpreter. 
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The capability of an operating system to both shrink in the smallest of objects and make use of the 
most complex is what we call its “scalability”. The amount of necessary code must be minimal, all 
while letting more code be added to provide more features. For this also, a Language-Based 
Computer architecture turns out to be very efficient. The interpreter code is only a few tens of 
kilobytes, and the number of functions it can call can be updated thanks to the use of an indirect call 
table. It is therefore required that the P-codes of the instructions be at least 16 bits long, which rules 
out those whose instruction size is only 8 bits. 
 

Fleet of Objects Management Problems 
 
The deployment of large quantities of small objects in homes poses three problems of fleet 
management: the management of the fleet of objects inside one home, the management of objects of 
the same type across homes, and finally the management of the data which we allow to leave the 
premises. 
 

Management of the Objects in one Home 
The reason for adding communication abilities to small objects is first and foremost a local one: the 
objects in one home must interact with and receive commands from the residents. Some standards 
such as EnOcean allow controller type objects to discover locally sensor and actuators, and to create 
links with them. Specific IP protocols such as Simple Service Discovery Protocol (SSDP) also allow 
the discovery of local equipment. Even if they are simple compared to TCP/IP, these protocols are 
nonetheless too complex to be used by application software. It is therefore desirable to integrate them 
to the operating system.  
 

Object Maintenance 
The software upgrades in the case of IoT, where we only have low bandwidth radio channels occurs 
through gateways, which have an Internet connection as well a connection to the radio channel. If we 
compare the total embedded code sizes, with the bandwidths of the radio channels, it become obvious 
why partial updates are required for code embedded in objects. From this point of view also, 
Language-based Computer type approaches are beneficial because the part of the application most 
often upgraded, the application, is wholly separated from the rest of the code, because it is written in a 
different language. It is highly desirable, and it may be required that all modifications to the code be 
authenticated by the operating system. 
 

Exported Data Management and Permissions 
The personal data collection and their mining has become a source of profit. Google for instance, to 
better sell targeted advertising, is increasing the sources of collection and cross-matching of our 
personal data, in particular the contents of our mails (Gmail) which are systematically analyzed by 
artificial intelligence software called “bots”. All of the manufacturers of IoT products also wish to collect 
and store the data collected in our homes for their own benefit. To do so, the collected data are 
directly transmitted using the Internet to back-end servers under the control of the manufacturers of 
objects, and only through these servers can users access their own data. Even if end users are 
doubtlessly ready to let this silent data collection happen, if they even realize it is going on at all, the 
same cannot be said of the managers of industrial sites, or of housing domains, who are justifiably 
afraid of security breaches. The operating systems of IoT controllers will have to offer the means to 
encrypt the transmitted data, but also to block confidential data from getting out. 
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Hardware input/output architectures 
 
Historians generally consider that the first machine deserving to be called a computer is the ENIAC 
(Electronic Numerical Integrator and Computer). This computer was designed at the Ballistic Research 
Laboratory of the US Army, at Aberdeen in Maryland. This machine was designed by John Presper 
Eckert, based on ideas of John William Mauchly professor of physics, who had realized that 
computation of ballistic tables could be performed electronically. Before the ENIAC was fully 
functional, a second project called EDVAC (Electronic Discrete Variable Automatic Computer) is 
launched in 1946 under the direction of the same Eckert and Mauchly, based on a documented written 
in 1945 by John Von Neumann: First Draft of a Report on the EDVAC. As the name suggests, the 
document is a first draft, and is very incomplete. The subject of the document is in no way the 
description of a computer architecture but does have going for it that it explains how to use vacuum 
tubes to increase the speed of computation. The central chapter is this document, 6.0 E-Elements 
gives a model of the “elementary electronic neuron”, and the following chapters describe how to build 
an adder, a multiplier, and a subtractor, binary floating points, and central memory using this 
elementary building block. By way of introduction, the document starts with a paragraph called 2.0 
Main subdivisions of the system, which is, without saying so, a simplified functional description of the 
ENIAC. But because this article was published in 1945, before the 1948 article “The ENIAC”, and 
because achievements were considered more important than publications in these final years of World 
War II, the historians mistakenly both attribute the invention of the architecture to John Von Neumann 
and tie it to the EDVAC. 
 
The two fundamental points of the architecture of a computer are on one hand the description of its 
buses and of its instruction set, the two being closely tied. The 1945 article by Von Neumann does not 
address the notion of a bus at all, and only defines the different classes and sub-classes of 
instructions. Bear in mind that the article contains no architectural diagram. Nonetheless on-line 
literature is filled with diagrams entitled “Von Neumann architecture,” most of which do not contain a 
bus, which is a central element without which the understanding of a computer is impossible, and 
which both the ENIAC and the EDVAC had. The following architectural diagram was draw by us from 
the February 1948 article The ENIAC (J.G. Brainerd et T.K. Sharpless), in particular the chapter 
Machine Components (Fig. 2): 
 
 
 
 
 
 
 
 
 

Fig. 2 - A universal bus of ENIAC Machine 
 
It's important to realize that the four rectangles at the top of this diagram have little to do with the 
physical architecture of the ENIAC which is found in Figure 2 ENIAC Floor Layout of the same article. 
What is called Arithmetic Component is a set of electronic bays in which the addition, the subtraction, 
the division, but also some memory; 20 accumulators and 3 function tables. The set of bays 
corresponding to the Memory Component also contains 20 other accumulators and 3 function tables 
identical to the previous ones. The Input and Output Devices rectangle represents a set of various 
hardware setups among which are card readers, a card puncher, led and button panels, each of them 
directly connected to the bus, which is made up of coaxial cables. 
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It is essential to remember that both the ENIAC and the EDVAC were machines meant for performing 
computation - for ballistic trajectory computation to be precise. In no way were these machines meant 
for data processing in the modern sense of the term. They were computers in the sense of automatic 
electronic calculators. Only ten years later would the distinction between computer and calculator 
disappear for good. All the attention and energy of the ten or so engineers working on building the 
ENIAC was concentrated on the creation of the electronic bays of the Arithmetic Component, Memory 
Component, and Control Component. All the Input and Output Devices were well tested devices 
bought “off the shelf” from different companies such as the card readers and punches were from IBM, 
these types of devices having been used for 30 years at that point (IBM was founded in 1911). 
Plugging these devices to the computer was a minor issue, little thought and effort was given to the 
problem. In 1948, in a famous article called The Eniac, two engineers who took part in the project, J.G. 
Brainerd and T.K. Sharpless, wrote the following: “Current developments in large-scale general-
purpose digital computing devices are devoted to a considerable extent to obtaining speeder input and 
output mechanisms.” 
 
These developments bore fruit. In 1978, Hewlett-Packard started selling a machine considered to be 
one of the first “workstations”, that is meant for a single user. The HP 9845A comprises a graphical 
screen, a keyboard, a printer, and a tape reader. Like all Hewlett-Packard hardware, it is very easy to 
use and perfectly well built, making it a subject of envy and admiration. In the design of its 
architecture, the effort spent on input/output goes far beyond what was done for the program 
execution sub-system (Fig. 3): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 - The first “workstation” principal construction 
 
 
The LPU executes a BASIC interpreter. The BASIC program is stored in memory with two access 
ports for the LPU and PPU. When the BASIC program requests an input/output, a request is written in 
the two port memory, and is executed by the PPU. While the PPU executes the input/output, the LPU 
can proceed with the execution of its BASIC program. 
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A new architecture for communicating machines 
 
The remarkable hardware architecture of the HP 9845A of 1978 described above had only one 
important problem, and that was its cost because it used two 16-bit processors, the LPU and PPU 
running at 5.7 MHz. By comparison, the first micro-computers IBM PC 5150 of 1981 only had a single 
Intel 8088 processor running at 4.77 MHz. But both the removal of the processor dedicated to the 
input/output and the design of the BIOS low-level software layers which did not expose the hardware 
interruptions gave the IBM PC 5150 poor input/output performance. Only with OS/2 (1987) and 
Windows NT (1993) did decent input/output handling systems emerge, and they were still far from the 
true capabilities of the hardware devices. In 1999, in an article entitled Introduction to “The Eniac” 
(referencing the 1948 article The Eniac), W. Burks (one of the main designers of the electronics of the 
ENIAC) and E. Davidson wrote: 
 
"... and once again, as with the ENIAC, computation rate is not the performance-limiting factor, rather 
it is still the communication, the I/O, the setup for the computation. It seems that communication 
science may be at the heart of the problem after all." 
 
In reference to this still relevant observation, we introduce a new distributed operating system 
architecture meant for IoT and communicating machines. It is based on the notion of “containers”, that 
is a set of self-sufficient codes that can either run on bare metal without any other software, or on top 
of any third-party operating system. The architecture introduced is composed of two types of 
containers which talk only by messages, the app containers and the I/O containers. 
 
Every time it needs to perform input/output an app container sends one and only one request 
message to the I/O container, which will return exactly one response message. We have a 
client/server relationship, the app container being the client, and the I/O container being the server. A 
single machine can host either only an app container, only an I/O container, or both. Every machine in 
the same local network has a unique number called its node number. 
 
The request and response messages have exactly the same structure, called an event. An event 
carries two addresses, one for the recipient and one for the sender. An address is a triple of integer 
numbers: node number, automaton number, and way number. The automaton number designates a 
functionality of a container, while way numbers distinguish the different instances of the same software 
functionality. 
 
An app container can contain an RTOS, C applications, interpreters, an HTML renderer or even 
another operating system. In the latter case, the container must include a software component for that 
system to converts all the input/output commands to request messages. 
 
An I/O container contains drivers, protocols, services, and file systems. When a message reception is 
requested, it can stack a protocol or a file system on top of a driver. It is also able to create pipes 
which are unidirectional data flow within the container. It has two schedulers called VMIT and VMIO. 
The first preempts the second with no latency, with the very next instruction running the VMIT. 
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The following diagram represents one communicating machine and two IoT devices on the same local 
network, typically Ethernet and WiFi (Fig. 4): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 - Communication of several IoT devices 
 
 
Node 1 will typically be a router, a NAS (Network Array Storage) file server, it can have a display, such 
a TV or a set-top box. It contains four sub-operating systems, each having their use and a different 
latency. The VMIT responds to hardware interrupts, with a response time much less than the 
microsecond. The VMIO receives I/O requests and has an average response time of less than 100 
microseconds. The VMK is a non-preemptive RTOS which allocates time to the Linux kernel. The 
Linux kernel is stripped of any driver, protocol, network service or file system. All of the input/output 
requests coming from the Linux applications are transformed into request events which are directly 
deposited to an I/O container, which can be in any of the nodes 1, 2, or 3. For a Linux binary, all the 
devices of the three nodes are seen as local devices. Without any modification, the Linux kernel 
benefits from distributed system features. We therefore have four sub-systems, where each has a 
specific role for which it is specialized, and from the architecture of its scheduler has a different 
response time. Of course, the most feature-rich sub-system will be the slowest, and conversely the 
most lightweight will be the fastest. 
 
Node 2 will typically be equipped with a 4 MHz processor, with 16 kilobytes of RAM and 128 kilobytes 
of code, which gives it capabilities equivalent to that of the 1978 HP 9845A. Like this machine, node 2 
is a Language-based Computer: its programming language, in this case MicroPython is interpreted. 
Like the HP 9845A, it is responsible for all the input/output. Unlike the 9845A, a single processor is 
used. The VMIT preempts the VMIO and the VMK with zero latency, and the VMIO preempts the VMK 
with zero latency. 
 
Node 3 is a small sensor which does not contain an application container. It behaves like an 
input/output server; it handles requests which can come from the other nodes. 
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Application Containers 
 
Like the Language processing Unit of the HP 9845A, an application container contains everything that 
allows an application to run, except for the input/output. What constitutes the application itself will be 
there, C code, MicroPython code, but also HTML files. The container also includes the necessary 
code for that code, such as mathematical functions, a MicroPython interpreter or an HTML renderer. It 
contains an RTOS which will support the application written in C, the interpreter or the HTML renderer. 
 

The VMK 
The features that the RTOS must provide are very limited, because all of the input/output will be 
transferred to the I/O container. We call VMK this simplified RTOS. It must provide primitives for task 
handling, for semaphores, and for event queues. Every task of the VMK has a stack, and a message 
queue of its own events, and optionally its address space. Finally, the VMK must have the means to 
send events to the nodes, so that the I/O requests can reach the various recipient container nodes. 
 

HTML renderer 
The code bases of many large software projects such as HTML renderers usually have abstraction 
layers for all of their input/output: telecommunications, files, and graphics. They are therefore easily 
embeddable in application containers, using a conversion layer that transforms all procedural 
input/output calls to request events. Furthermore, experience shows that 90% of what is believed to be 
part of the HTML rendering in itself is actually code used by the various abstraction layers meant for 
the various operating systems and the remaining size will go down from 200 to 20 megabytes of code. 
 

Application-Oriented Operating System 
An application-oriented operating system such as Unix or Linux can easily be embedded in an app 
container. It is easy to strip them of all of their drivers, protocols, network services, and file systems 
and to create once and for all, a conversion layer like with the HTML renderer, which turns the 
procedural input/output requests to request event deposits. Having done this, the size of the kernel is 
only a few hundreds of kilobytes. In this way, we have as a single VMK task, a Unix/Linux kernel 
where almost all security flaws have disappeared, because the weakest components have been 
replaced. Previously unobtainable throughputs are achieved, and the data flows inside pipes within the 
I/O containers. Finally, the strict separation between the kernel and the I/O located in distinct 
containers and communicating by passing messages, makes using hardware peripheral register 
access controls (a trusted zone) easy, further increasing the security of the data. 
 
One should note that the client/server model used between applications and for input/output means 
that the requests made by the application does not need to go through the VMK and are directly sent 
to the recipient input/output container. The same is true for the response events. 
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Input/Output Containers 
 
An input/output container is the equivalent of the Peripheral Processing Unit of the HP 9845A. It 
receives input/output and pipe configuration requests. It contains drivers, protocols, network services, 
and file systems. It is composed of two sub-systems which are: VMIT, an interrupt handler, and VMIO, 
a monolithic input/output monitor. 
 

Interrupt handler 
At the lowest level is a sub-system called VMIT, and whose role is to handle hardware interrupts with 
different priorities and which can therefore be nested. To each hardware interrupt priority corresponds 
one and only one stack. The address space is unique and is that of the input/output monitor. This sub-
system handles the low-level drivers, that is all the code which depends on the peripherals. For every 
type of device or peripheral, there is a specific Hardware Abstraction Layer, that is a specification of 
both the interface of the procedure meant to control the type of device, and second the events 
submitted by the interrupt handlers. These messages can only be deposited to the local input/output 
monitor, located in the same address space. All of the code of the VMIT depends on the specific 
hardware, including the scheduler which depends on the CPU and the interrupt crossbar wiring. 
 

Monolithic Input/Output Monitor 
Above the VMIT is a monolithic input/output monitor called the VMIO, which executes high-level 
drivers, the protocols, the services, and the file systems, all implemented as automaton transition 
tables. There is no notion of a task at this level, nor of semaphores which makes going from one 
function to the next a latency-free operation, which in turn allows for high bit rates even with multiple 
concurrent flows. In order to achieve zero-latency, the VMIO uses a single stack for itself and all its 
automatons, a single address space and a single set of registers. Every driver, protocol, service or file 
system component is composed of a transition table (state, event) and of a set of C procedures, which 
are all transactional handlers for a transition. These C procedures, these automaton transition 
handlers, when they need to send commands to a device under their control, will use directly call 
without any context switching the C procedures which implement the Hardware Abstraction Layer for 
the device. There is a one to one correspondence between high-level drivers and the specifications of 
the low-level drivers. All of the code for the VMIO, including the scheduler, is written in C, and is 
strictly portable without any modification or conditional compilation. The VMIO has a pipe mechanism, 
which allows a unidirectional data transfer from automaton to automaton. A pipe is configured and 
started using request events, and then the client does not need to intervene anymore for the data to 
flow from automaton to automaton. Thus, the various data flows occur without any context switching, 
and in particular no copy and no address space change. If for instance the application configures a 
pipe ETHERNET => TCP => HTTP => FAT32, a high-speed download feature is realized. 
 
In this example, the TCP protocol, the HTTP service and the FAT32 file system are executed within 
the monolithic monitor, and not within the RTOS, which runs in the app container. This is a major trait 
of the architecture we introduce. Some have noted that the RTOSes are two slow for demanding I/O 
tasks and have tried to develop faster RTOSes by reducing the context switching time. This is 
pointless, as it reduces the functionality of the RTOS, without even truly reaching the goal of a 
sufficient speed-up. By having both an input/output monitor and separately a RTOS, we can both 
perform I/O faster than a RTOS would, while also having a feature-rich RTOS if needed. 
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Media Home Gateway Example 
  
A Media Home Gateway will typically have a hard-drive, and an Internet connection be it Ethernet or 
WiFi. It hosts an application container and an input/output container (Fig. 5): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 - Home media Gateway device software organization 
 
The application container embeds a first application operating system VMOS which contains 
interpreters built as finite state automatons. The VMOS executes the middleware of the Media Home 
Gateway. Second, there is a HTML renderer, for which an abstraction layer was implemented, which 
the input/output requests of the renderer are converted in events deposited to the I/O container. Third 
is a Linux kernel stripped of all of its drivers, protocols, services, and file systems. An abstraction layer 
converts all Linux input/output requests to request event deposits. 
 
The I/O container has two low-level drivers, that is hardware-specific code, one for the Ethernet 
controller and one for the ATA disk. The two interrupt handlers are called by the VMIT. Each low-level 
drivers needs to follow the specification for the type of hardware, the low-level Ethernet driver must 
implement an Ethernet API which is not the same as the ATA API. The VMIO input/output monitor is a 
finite state automaton engine, which executes the automatons that are independent of the hardware. It 
contains the “high-level” drivers for Ethernet and ATA, but also the TCP/IP and TLS protocols, the 
HTTP service, and the FAT32 file system.  
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An IoT with Application Example 
 
An IoT Language Based Computer will typically have an Ethernet connection and multiple radio 
modems such as Bluetooth Low Energy or EnOcean. It hosts an application container and an I/O 
container (Fig. 6): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 - Example of IoT device software with Application level 
 
 
The app container embeds a MicroPython interpreter and an application written in MicroPython. An 
abstraction layer converts the MicroPython input/output request to request events.  
 
The input/output container has three low-level drivers, that is hardware dependent code, the one for 
the Ethernet controller, the one for the Bluetooth Low Energy modem and the one for the EnOcean 
modem. All three interrupt handlers are called by the VMIT. Each low-level driver must implement a 
specification specific to the nature of the hardware, the low-level Ethernet driver must follow the 
ethernet API, which is not the same as the ble API (Bluetooth API), or the eno API (EnOcean API). 
The VMIO I/O monitor executes six automatons which are independent of the hardware: the high-level 
drivers for Ethernet, BLE and EnOcean, but also TCP/IP and TLS, the HTTP service. 
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A Basic IoT Example 
 
A basic IoT device will typically have an EnOcean radio modem, and binary I/O using GPIOs. It only 
contains an I/O container (Fig. 7): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 - The basic software set for IoT device 
 
 
The input/output container has two low-level drivers, one for the EnOcean radio modem, another one 
for the digital and analog GPIOs. The two interrupt handlers are called by the VMIT. The VMIO 
input/output monitor executes three automatons which are independent of the hardware; the high-level 
EnOcean and GPIO drivers, but also a micro-application called app. 
 
The small application called app is written as a finite state automaton and is inside of the input/output 
container. Typically, the app automaton receives remote requests and exerts elementary command 
control logic. This is an additional feature afforded by this architecture, allowing to further shrink of the 
code by eliminating the application container and the VMK. 
 
The basic IoT can simultaneously behave like a remove device in the case of a distributed system, 
being an input/output server, but also as an IoT able to handle messages which are not events thanks 
to the small app automaton which can contain a small message parser of another format, and simple 
application logic. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

VMIO 
OS I/O 

under IT 

app enocean gpio 

handler 

I/O Hardware 

VMIT handler 

I/O Container 

eno API 
eno 

gpio API 
gpio 



 

 
 Hyperpanel OS – Architecture 17 

Conclusions 
 
In a world where hardware technologies have long followed Moore's law, the principles of operating 
system design evolve at a entirely different pace, where the major traits of the architectures of the 
systems such as Windows, iOS, and Linux are derived three decades of work dating back to 1964 
(Multics architecture). 
 
The study of the new architecture introduced here has started in 1986, with the need to implement a 
distributed satellite image processing system. In order to transparently chain processing performed on 
one hand on a mini computer running FORTRAN code, and on the other hand on an image 
processing machine, the two being connected by a high-speed interface, the software was split in an 
application container, and two image processing containers. The first container comprised a 
FORTRAN interpreter, which made requests to the image processing software located on the same 
computer and also to the container for the image processing machine. On the 27th of April 1986, two 
days after the Tchernobyl nuclear plant accident, one of the first infrared picture of the site is 
transmitted by the SPOT satellite to be worked on using this application composed of three containers 
distributed across two machines. 
 
All of the architectural traits described here have been validated separately through the 
implementation of various military and civilian projects between 1986 and 1999. From 1999 to 2008, a 
first version of our operating system has been implemented following all of the architecture, proving 
that it is indeed a very efficient solution to all of the problems identified at the start of this article. This 
culminated in real projects, delivering consumer electronics that reached the market. 
 
The architecture is based on concepts and ideas which all existed previously. We did not invent the 
notions of container, of Language-based Computer, of finite state machine engine, of input/output 
monitor, of interrupt dispatcher, of abstraction layers, of sub-system separation, of preemption, or of 
execution levels. We did not invent a model for hardware architecture such as the one attributed to 
Von Neumann, nor did we discover the importance of logical automatons of which Alan Turing has 
shown that they are a model of any machine capable of computation. 
 
We did combine all of these concepts and have thus obtained a new architecture and thanks to this 
we believe we have solved the major problem of input/output, for which W. Burks observed as late as 
1999 that a lot remained to do from a conceptual point of view. Moreover, this architecture allows 
improvements in machine to machine relationships, in operational safety, in security, in frugality with 
regards to hardware resources and electrical power, in scalability, and in deployed fleet management. 
The use of finite state automaton in the input/output container, allowing both greatly improved 
performances and the comprehensiveness of unit tests, is an essential aspect. 
 
This architecture can be used fully or partially according to the needs. It is first and foremost meant for 
true IoT. It is also applicable to all systems doing input/output whatever they are. But it can also be 
used in hybrid objects, that is objects which both communicate while also performing more complex 
software functionality: control systems, data collection and storage, or local artificial intelligence. 
 
The integration of small rule-based programming, also called “artificial intelligence”, inside our home 
clouds seems essential in order to use all the hardware capabilities of our communicating machines. 
These will have to be installed and configured in as fully automated manner as possible, be able to 
perform “reflex arc” type actions and request assistance from the outside when needed. 
 
 
 
 
 
 
 


