
IOT COMPUTING

SHALL REQUIRE

ANOTHER PROFOUND

OS ARCHITECTURE

RESET

None of the existing RTOS (Real Time Operating System), neither any of the GPOS

(General Purpose Operating System) kernels dominant architecture could alone tick all of

the essential requirements that IoT computing shall entail.

Only a truly hybrid new GPOS, being both RTOS capable (i.e.: fast, determinist and

secured by design) - while also remaining lightweight, ultra-low power, reliable over

decade long periods - could fulfil the upcoming challenges arising within the Internet of

Things context (IoT).

HyperPanel Lab has developed and fully copyrighted such a candidate Hybrid GPOS kernel

disruptive architecture for the IoT Computing purpose - HPL-OS4.0

 2

INTRODUCTION

The Personal Computing revolution has durably

fostered Microsoft Windows’ OS domination. Then,

Mobile and Cloud Computing leveraged instead the

UNIX OS and all its derivatives (being Linux, Android

and iOS). Similarly, the Internet of Things (IoT)

upcoming era shall again necessarily require another

profound OS architecture reset.

Typically, within the scope of the Internet of Things,

software defined vehicles and Industry 4.0 automation

will be triggering the quest for a whole new hybrid OS

being both in a row an embedded RTOS (Real Time

Operating System), as well as a computing GPOS

(General Purpose Operating System). Equally

challenging, Consumer based Smart IoT devices will

also require - quite often within a rather limited

hardware footprint - up to decades long seamless

support and native security robustness.

In a nutshell, a RTOS has been for decades the

preferred OS of choice for developing embedded

computing devices and systems whose features rely on

real-time data, ultra-fast and predictable context-

switching, and determinism to deliver an accurate

output within an expected timeline.

But RTOS do lack, among other things, advanced user

interface capabilities, as well as APP based versatility,

adaptative connectivity, and multitasking modern

functions and throughput that only a GPOS can enable.

However, incumbent GPOS could, by no means,

support the strictest time, preemptive mode and

determinism boundaries that only RTOS can natively

perform for the purpose.

IoT OS SPECIFIC ISSUE, AS IT STANDS

Beside the inability to run on lightweight memory

footprints and power limited MMUs, it is essentially

the lack of real-time and secured performances that

remains the unsolved critical impediment for a GPOS

wider adoption within the IoT ecosystem, then the

RTOS phase out.

Within the IoT context, and beyond real-time

responsiveness, RTOS will therefore remain here to

stay because of their still unrivalled ability to meet

most Things’ Computing essential requirements such

as deterministic task handling and optimal resource

usage, ultra-low power consumption and even year’s

long battery-based usability, not to mention data

extracting reliability and trust.

Today, software defined vehicles are the typical IoT

connected platforms where RTOS have to cohabit with

GPOS in a sometimes rather complex combination.

Reason is that RTOS are the only solution to propel

high-priority security functions, such as for example

the automatic air-bag control system. Indeed, as soon

as the vehicle senses a shock, the airbags should be

activated within a milli-second whatever a smart GPOS

may be executing in the meantime for the cockpit

control interface, the self-driving mode, or the

infotainment. Hence, being able to preempt the kernel

and enforce critical task scheduling to dispatch threads

and processes onto the CPU is typically what GPOS

lack.

On the other hand, GPOS can indeed perform a much

higher overall throughput than any RTOS could ever

come anywhere close to, which is precisely what

desktops, smartphones and server applications do

require. As such, GPOS enable dynamic memory

mapping and random execution patterns, but in no

circumstances, they could match RTOS’s native ability

to be deterministic (but having no random execution

pattern), within a predictable response time, time

bound and preemptive kernel.

INTERMEDIATE SOLUTION - TRADE OFF

As noticeably stated by Paul Leroux, a former OS

expert at Blackberry / QNX, “this is not a matter of

RTOS good, GPOS bad. GPOSs such as Linux, Windows

XP, and UNIX all serve their intended purposes

extremely well. They only fall short when they are

forced into deterministic environments they were not

designed for, such as those found in automotive

telematics systems, medical instruments, and

continuous media applications”.

In essence, since GPOS like Linux do not have a

preemptible kernel, then even a high-priority user

thread could never preempt a kernel call, but instead,

 3

it has to wait for the entire call to be completed – even

if that call was invoked by any of the lowest-priority

process. Such behavior obviously causes unpredictable

delays and prevents critical activities from being

executed on time (which again, is definitely not

acceptable for an airbag control system).

There are currently 3 approaches at stake to try and

solve that dilemma between RTOS and GPOS for the

purpose of IoTs. Here they are:

A => One is to try and expand the RTOS original

capabilities in terms of user interface to try and come

closer to the demand for increasingly sophisticated

Graphical User Interfaces, 3D rendering, and web

based advanced graphics that are popular in most

GPOS. Indeed, it is then important to keep on isolating

as much as possible the user interface from the rest of

the RTOS process to keep fulfilling the strictest

certification requirements, such as EAL5 and other

Industry specific security Standards for avionics,

automotive, medical, etc.

B => Alternatively, there has been many attempts to

try and improve task preemption of existing GPOS

through the development of a number of real-time

extensions, tasklet and patches.

But in practice, this comes with a price in terms of

porting complexity and maintenance efforts. In

practice, it usually comes down to a dual-kernel

approach whereby the GPOS runs as a task on top of a

dedicated RTOS. Then, critical tasks that require

deterministic scheduling run in the sub kernel and can

therefore preempt the GPOS. However, such tasks

cannot rely on any of the existing GPOS mainstream

services, unless being subject again to the same

preemption problems that prohibit GPOS processes

from behaving deterministically. So, additional new

drivers and services must be created specifically for

the real-time kernel itself – no matter if those already

exist within the GPOS - thus creating additional

fragmentation and maintenance issues. Also, coding

complexity is increasing in several order of magnitude

as typically most existing GPOS drivers are not

preemptible. So, to foster predictability, one must

insert numerous preemption points into each drivers.

C => The last option, recently popularized by Google

(with Fuchsia OS and Kata OS), but also Meta (with the

now discontinued XR/OS project), and even Huawei

(with its HarmonyOS, yet to be released, roadmap) is

to adopt a micro-kernel type architecture.

As per a common description, “in a microkernel, only a

small core of fundamental RTOS services (such as

signals, timers, and scheduling) reside in the kernel

itself. All other components (such as drivers, file

systems, protocol stacks, and applications) run outside

the kernel as separate, memory-protected processes”.

Doing so, the microkernel contains only the near-

minimum amount of code that provides the base

mechanisms required to implement an OS on top.

Therefore, it overcomes the issue of RTOS piloting a

GPOS, whereby if a real-time task contains a coding

error then it can cause a fatal kernel fault. Instead, a

microkernel does contain memory protection features

and it can be broken down into separate processes

called servers. In other words, the kernel and the user

services are isolated, so if any of the user services fails,

then the kernel service remains unaffected.

Microkernel have been getting renewed traction

because unlike patches and attempts to make a GPOS

real time, it significantly streamlines the development

of the specific drivers and extensions necessary to

support a GPOS as a service. Also, Microkernel are

scalable as new services can be added to the user

address space, without changing the kernel. However,

as the drivers have to be implemented as procedures,

a context switch, or a function call are required.

IoT COMPUTING IS YET TO BECOME

COLLABORATIVE, THUS ENTAILING A

WHOLE NEW OS ARCHITECTURE RESET

Internet has evolved from originally connecting people

to people, and then people to physical things, to

eventually connect physical things to other physical

things, all seamlessly and in real time. This is called the

Internet of Things (IoT).

Then, without any human intervention, IoT smart

devices collect, send and act on the data they acquire

from their environments, including the information

they get from one another. So, after Personal

Computing - and then next Mobile Computing - time

has now come for Things’ Computing to happen.

But the same way both Computing and Internet have

gone through drastic mutations over the years, so will

the Internet of Things as well.

 4

Consequently, we are just at the beginning of another

truly disruptive Computing & Internet major

Revolution, and as always, this will require another

profound hardware (microprocessor) and software

(Operating System) reset.

Originally, Internet was purely about basic

connectivity, thus digitizing our connections (emails,

web browsing, … alongside the emergence of global

champions such as Google and Yahoo!). Later, in a

second phase, Internet digitized both the business and

the process (i.e.: it is the eCommerce boom with new

champions being Amazon and Alibaba).

Then, Internet unleashed whole new collaborative and

immersive experiences, thus digitizing all of our

interactions, both private and business. That has been

the time of social media, video streaming, eSport,

Metaverse, Cloud containerization & AI as a Service, ...

with new iconic stakeholders being Facebook, Netflix,

etc.

The Internet of Things will also come along the same

3-steps evolution path – i.e.: connectivity first, then

business transformations, and ultimately,

collaborative computing.

At first, and till now, IoT is still very much about

nascent connectivity, which is the reason why the US

and China consider the Cloud and 5G so crucial. Next,

IoTs are set to truly revolutionize smart cities,

transportations, industries, agriculture, heath, … the

same way eCommerce platforms like Amazon have

revolutionize our traditional retail. Then, eventually, in

an ultimate and third stage, IoT will be entering into

the genuine collaborative Things’ Computing era (like

Social Networks have profoundly affect people

interactions).

That ultimate IoT collaborative phase shall obviously

raise fundamental and whole new technical challenges

that none of the current Computers, Smartphones or

Routers incumbent hardware, neither any of their

mainstream Operating Systems (OS), will be capable of

solutioning alone.

The new desired OS of choice to truly unleash the

collaborative IoT computing future revolution will

necessarily have to be hybrid – i.e.: both RTOS and

GPOS capable – as well as lightweight, ultra-low power,

secure and reliable over decade long periods.

While there are plenty of RTOS and microkernel

available, the GPOS only come down to 2

architectures, both under US copyrights. One is indeed

Microsoft, and the other one is UNIX whose routes and

derivatives are Linux, Android, MacOS, iOS, Solaris,

IBM AIX, …

That is where HyperPanel Lab comes in the play with a

compelling, and absolutely unique, level playing field

turnkey and readily available OS kernel solution.

HyperPanel Lab is a French computer science company

founded in 1988, whose founders and world-class OS

experts have created from scratch, over 25 years of

self-financed R&D, a 100% sovereign and fully

copyrighted GPOS breakthrough architecture.

Beyond being the sole and unique third GPOS

architecture available to date - beside Microsoft and

Unix - HyperPanel’s OS is the sole and only GPOS that,

within a very small footprint, unleashes the full

benefits of both a deterministic RTOS as well as the

genuine multi-tasking capabilities of a modern GPOS,

but in a modular and distributed architecture.

HPL-OS4.0 comprises 2 layers being a software

extension of the von Neumann hardware architecture

to the Operating System itself. The upper layer deals

with the applications, while the other one manages the

hardware – i.e.: handling both the I/O and the telecom

stacks. This lower layer is therefore acting as a kernel

having hands’ on all the drivers, communication

protocols and memory access.

The technology is leveraging the Turing Machine

principles as FSM (Finite State Machine) are

implemented for all the drivers and telecom protocols

which are then operated by the dedicated FSM engine.

Using FSM enables an ultra-efficient interruption-

based monitoring of the kernel, thus allowing to

drastically lower latency, while matching as close as

possible the hardware fastest theoretical processing

time.

HPL-OS4.0 kernel has been entirely developed in

France over 2 decades, in a clean-room R&D

environment, by HyperPanel Lab’s OS architects. The

company controls 100% of the copyrights and

therefore does not fall under any GPL license scheme,

nor any disclosure obligation of any kind, and neither

do its licensees. It also means that the Kernel lifecycle

is under full control and does not depend upon any

external provider, nor any foundation.

 5

Offering stunning real-time execution speed and

latency, instant boot, ultra-low energy consumption,

DRAM-less use cases, and seamless updates while

running ; HPL-OS4.0 kernel comes with another unique

characteristic: its native ability to dynamically

distribute, without any latency, all of the IoT’s

hardware resources amid propelled devices connected

within the same edge Cloud (which is another benefit

of the smart application of the von Neumann machine

theory).

With millions of devices already deployed by tier one

operators, OEMs and CE manufacturers, the

Technology concept has already proved its unrivalled

ability to deal with complex video and multi-telecom

protocols and secured by design ecosystems. It is

immediately available with a compelling source code

comprising both the specification and the formal

verification unitary tests. Additional academic type

Computer Science papers are also available under NDA

to further ease the technology hand-over process.

HYPERPANEL’S HYBRID HPL-OS4.0 OS

TECHNOLOGY ABSTRACTS

HPL-OS4.0 Key Features

ð Collaborative IoT computing & M2M will involve

new edge type 4.0 routers capable of handling

seamlessly hundreds of devices & sensors in a row

with massive data throughput and real time

interrupts that HPL-OS4.0 four-level of execution

architecture is specifically tailored for.

ð HPL-OS4.0 is a hybrid OS, being simultaneously

GPOS (General Purpose Operating System) and

RTOS (Real Time Operating System).

ð HPL-OS4.0 is agnostic with respect to

telecommunications modes and can handle

simultaneously dozens of different

telecommunication protocols - wired or wireless,

broadcast or with return path - in a seamless

manner.

ð HPL-OS4.0 is a true distributed OS that allows

sharing all the hardware resources of any objects

equipped with HPL-OS4.0 and connected on the

same edge network. All these objects can then be

seen as a single virtual object, with a multicore

whose internal bus is the local network itself.

HPL-OS4.0 Fundamental Innovations

ð A complete Operating System (OS), including:

§ Its own Kernel (HPL-OS4.0 Kernel).

§ Its own Middleware (HPL-OS4.0 Middleware).

§ Boot & Loader (HPL-OS4.0 Boot & Loader).

ð A Kernel architecture derived from John von

Neumann’s computer architecture with a clear

separation between:

§ Inputs/Outputs, Protocols & Drivers (I/O

container).

§ And applications processing (Application

container).

§ The 2 containers communicate only by

messages.

ð A Kernel powered by a technology derived from

the Turing Machine:

§ All drivers and protocols are developed in the

form of Finite State Machine (FSM),

themselves powered by a dedicated FSM

engine.

§ The same approach can be used for the

application through a dedicated FSM engine.

ð A Kernel’s Scheduling of tasks based on hardware

interruption.

ð An OS ready to be industrialized as the source code

- in C language - includes:

§ Embedded documentation, and comments.

§ Built-in self-running unitary tests.

HPL-OS4.0

DISRUPTIVE ARCHITECTURE OVERVIEW

HPL-OS4.0 is the first Finite State Machine based

GPOS, thus bringing native determinism.

The required memory footprint can have a very wide

range and can be as low as 150 KB of Flash and 80 KB

of RAM, which is absolutely unique for a GPOS.

The code remains stored in the FLASH memory and

does not need, neither does the context, to be copied

in RAM in order to achieve ultimate execution

performances. Hence, the RAM memory is only used

to store variables. When the code is located in FLASH

and is not executed / used, absolutely no energy is

consumed - whilst any code storage in RAM draws by

itself a need or a larger RAM, which drastically impacts

energy consumption and IoT cost.

 6

HPL-OS4.0 comes with 4 levels of execution. This

allows HPL-OS4.0 to be fastest than most RTOS to date,

whilst still offering complete GPOS functions and

capabilities. These four levels of execution are spread

into two specifics containers: one being in charge of

managing the I/O, and another one being in charge of

managing the applications.

Tasks are handled as FSM, using a system dedicated

transition table. The task scheduler is a subroutine of a

more general engine. Task semaphores are

implemented using system events.

Every transition is associated to two parameters,

which are the event which causes that transition, and

the treatment which is run.

HPL-OS4.0 suppresses all hardware to software

latencies means that whatever hardware event arises

(i.e.: an interrupt), its software processing is

immediately started within one CPU cycle (interrupt

handler). Then, the next processing steps (pipe) will

also be started at the next CPU cycle. To achieve that,

activity switching time has to be reduced by a ratio

between 100 to 1.000. Experiments and computations

are showing between 400 % to 1.000 % benefits in

terms of I/O throughputs increase with the very same

hardware.

That sub-level container is based on Finite State

Machines (FSM) to better echo any processors’

ultimate hardware capabilities, while also enabling

secured management of the Inputs & Outputs - both

in terms of process, memory access and data handling

– as well as the Protocols. Whereas GPOS are all

monolithic, HPL-OS4.0 isn’t: it is at last truly modular

and scalable, somehow likewise microkernel based

architectures aim to be.

The HPL-OS4.0 two containers are both leveraging

their own sub-systems and operating independently

one from another, thus enabling several execution

levels and time endorsement capabilities.

1 => At low level, a first container handles all

Inputs/Outputs (I/O), the system resources and the

telecom protocols. Thanks to the FSM, the treatments

become deterministic, bringing security and speed. It

also enables to manage these fundamental tasks at

unrivalled speed, up to 40 times quicker than any GPOS

could, and up to 4 times faster than most RTOS would.

 

2 => At upper level, the second container manages the

applications, like any GPOS would, typically the

JavaScript interpreter and the HTML browser. This

container has its own dedicated real time control unit,

and it can even be interfaced with a third-party OS

such as Linux, thus allowing easy re-use of legacy Apps

and software developments.  

These 2 containers communicate in an asynchronous

manner using an optimized messaging mechanism.

They can therefore run side by side on any multicore

processors, or separated on different physical IoT

devices running as if they were one single object

dynamically sharing hardware and functional

resources at the edge, rather than just data and files as

usual.

This makes HPL-OS4.0 a truly shared and scalable

hybrid GPOS perfectly tailored for the new IoT’s

empowered paradigm. The software package –

coupling both the OS with its secured boot and

tailored-made loader - also enables to achieve the best

ever-possible trade-off in terms of hardware loads

(both memory and CPU), native robustness and

security, autonomy, performances per MIPS, and

above all, fundamental “security by design” IoT

expectations.

BACK TO BASICS

The OS is the essential foundation software that

manages both the hardware as well as the other

software, thus providing system resources to meet the

demands of all the programs and applications.

Technically speaking, GPOS are designed to perform

multiple tasks running at the same time, while RTOS

are tailored for time-sensitive applications requiring

determinism.

But generally speaking, whereas a GPOS is perceived

as the actual interface between the user and its device,

it is actually down to the OS Kernel subset to provide

underneath the necessary interface between the

software applications and the hardware. As such, the

Linux Kernel is the foundation for the Android GPOS.

 7

Hence, one could assert that the OS Kernel is somehow

to a General Purpose OS, what the ARM or RISC-V

processor IP blocs (i.e.: the CPU core) are to any

General-Purpose microprocessor.

In other words, while there are plenty of GPOS

products out there (Android, iOS, Windows, Ubuntu,

Tizen, …), as well as plenty of General-Purpose

microprocessors (Pentium, Intel Core, Xeon,

Qualcomm Snapdragon, STM32, Broadcom BCM, …),

there are actually a very limited number of OS Kernels

and CPU architectures sustaining them.

CISC is typically the CPU architecture of choice for both

Intel and AMD, and RISC, the base Kernel architecture

implemented by ARM as well as RISC-V.

Similarly, side to Windows which leverages the

Microsoft original kernel, it is the UNIX Kernel

architecture that supports all of the other incumbent

GPOS, including Linux which is a custom

implementation of UNIX, the same way ARM is a

proprietary implementation of RISC.

So, considering that commonly speaking, a GPOS is

often perceived as a branded and application specific

OS based on a given kernel architecture (such as

ANDROID), HPL-OS4.0 is not to be ranked as a

commercial GPOS. Instead, HPL-OS4.0 is echoing UNIX

and Microsoft architectures, thus providing the third

core kernel of choice that makes it possible to easily

add on business specific services to develop a turnkey

GPOS (the same way ANDROID adds data storage,

screen display, multimedia, and web browsing to the

Linux Kernel).

However, HPL-OS4.0 is to date the only one of the

three OS Kernel architectures at stake capable of

seamlessly running a RTOS-capable hybrid GPOS for

the Internet of Things, thus combining both advanced

multitasking GPOS capabilities, together with

lightweight, ultra-low power, security by design and

determinism RTOS features.

HYPERPANEL LAB COPYRIGHT – Q1/2023

