
IOT 4.0 COMPUTING
ENTAILS RECRAFTING

LINUX
WITH REALTIME &

DETERMINIST
CAPABILITIES

HYPERLINUX FUNDAMENTALS

LINUX is a highly popular general-purpose Operating System, but being UNIX based, it is
not designed for real-time and deterministic behavior.

So workaround patches, primarily PREEMPT_RT, are gaining momentum from leading
Distros as well as the Linux Foundation to further empower embedded LINUX use cases.

Alternatively, HyperPanel Lab is shaping a whole new co-kernel turnkey approach – code
named HYPERLINUX - that aims at unleashing LINUX real time and latency performances,
while achieving formal proof determinism and security by design.

HYPERLINUX shall then enable instant and no-code integration modes using turnkey
daughter cards and reference designs.

 2

LINUX IS NOT A REAL-TIME OS

Linux is a highly popular general-purpose operating
system, but it is not designed for real-time and
deterministic behavior. Conversely, because of the IoT
computing revolution, there is an ever-increasing need
for smart OSes with real-time capabilities, actually
even beyond just industrial ecosystems such as
automation, medical, data acquisition and
measurement. For the purpose, Real-Time Operating
Systems (RTOS) do provide a reliable, fast and highly
deterministic reaction to external events, unlike
regular General-Purpose OSes (GPOS), which provide a
non-deterministic response.

In the meantime, Embedded Linux has eventually
become one of the most widely used operating system
for industrial applications, despite it is not
implemented for truly real-time use. Linux is yet
multithreaded, and it supports thread priorities, but
the kernel is not preemptible, which causes
performance issues, specifically on uniprocessor
systems. Scheduling latency is also a concern in Linux,
which makes it rather difficult to achieve determinism.

The main challenge in using Linux for real-time
applications is about configuring the kernel.
Developers must patch and customize the kernel to
achieve real-time objectives, which can be highly
difficult and thus require genuine and therefore rare
expertise. So overall, while Linux is a popular choice for
industrial real-time applications, it still entails
additional work to achieve the level of determinism
and low latency required by many real-time
applications. That is the reason why Embedded Linux
solutions with built-in real time functions and patches
such as PREEMPT_RT are essentially commercialized
by reputed tier-one Distros being RedHat (IBM),
WindRiver, Canonical, Linutronix (Intel) or Suse.

MAKING LINUX REAL-TIME

Today, real-time improvement of Linux systems can be
achieved through two main methods.

The first method is the dual-core approach, whereby a
real-time kernel is added to the original Linux kernel in
order to manage and schedule real-time tasks,
whereas the original Linux kernel becomes the lowest

priority task of this real-time kernel, meaning that
normal Linux processes are preempted when a real-
time task becomes ready to run, and the real-time task
is executed immediately.

The second method involves directly modifying the
Linux kernel itself, which beyond being incredibly
complex, both to do and maintain, can then make it
suitable for some sort of a general soft type real-time
requirement (i.e.: subjective scheduling deadlines,
depending on the applications).

Both approaches aim at reducing Linux latencies while
providing a deterministic response time to external
events. This makes the kernel better appropriate for
applications in Industries such as aerospace,
automotive, defense, IoT, robotics, telcos, public
sector, and retail. Various “embedded Linux distros”
are then designed to provide optimal compute and
deterministic performance for such time-sensitive
applications, while minimizing response time
guarantee within a specified deadline.

To fulfil the objective, the real-time applications
usually give themselves high priority, a lock in memory
as well as a lock-free communication pipe, while
avoiding non-deterministic I/O in order to execute a
task within a suitably constrained system. Some
system calls may even also require special privileges.

Such real-time versions of Linux are tailored to ensure
proper and timely execution of selected applications
and processes, making it better suited for monitoring
IoTs and edge systems requiring quick response times.

In summary, real-time improvement of Linux systems
is achieved through modifying the kernel or adding a
real-time one to manage and schedule real-time tasks.

METHOD 1 – CO-KERNEL APPROACH

Real-time (RT) Linux is an operating system that was
originally designed to provide sub-millisecond
precision and reliable timing guarantees for real-time
tasks. It works by running a small real-time kernel
underneath Linux, with the real-time kernel having a
higher priority than the Linux kernel. This allows the
real-time operating system to never be blocked from
execution by the non-real-time operating system and
for components running in the two different
environments to share data.

 3

RTLinux was based on a lightweight virtual machine
where the Linux "guest" was given a virtualized
interrupt controller and timer, and all other hardware
access was direct. From the point of view of the real-
time "host", the Linux kernel is a thread. Interrupts
needed for deterministic processing are processed by
the real-time core, while other interrupts are
forwarded to Linux, which runs at a lower priority than
real-time threads.

Overall, RTLinux was a hard real-time operating system
designed to support high-speed interrupt handling and
other real-time tasks. It has been used in various
applications, including embedded systems,
automotive, and aerospace. Although WindRiver
Systems acquired RTLinux in 2007 from its FSMLabs
creators, it always comprised patented proprietary
technologies not under GPL, and moreover, the last
GPL version has been retired by WindRiver, so
consequently, many RTLinux users had to switch to
alternatives such as RTAI or Xenomai.

METHOD 2 – PATCHING THE KERNEL

The Real-Time Linux Preemption Patch (PREEMPT_RT)
converts Linux into a preemptible kernel, thus
providing faster response times and removing
unbounded latencies. The big advantage of
PREEMPT_RT over other RT-Linux implementations is
that it makes Linux itself real-time, unlike other
implementations that use a microkernel.

The patch was originally created in 2004 by Ingo
Molnar, a "kernel hacker" known for his contributions
to the Linux kernel and now working for Red Hat, and
then maintained by Thomas Gleixner, whose
Linutronix german company has been acquired by Intel
in February 2022. In any case, PREEMPT_RT has
become in 2015 an official Linux project, which means
it is now within the scope of the Linux Foundation
under the so-called Real Time Linux collaborative
project. It aims at coordinating the efforts around
mainlining PREEMPT_RT while ensuring that
maintainers can continue development works, long-
term support, and future research over real time.

PREEMPT_RT makes Linux itself real-time, which
means that the programming model remains the
same. With other real-time Linux implementations, a
small micro kernel that runs like a hypervisor is
created, and Linux runs as a task, requiring

modifications to communicate with the microkernel.
However, with PREEMPT_RT, if a program runs on the
stock Linux kernel, it then runs on PREEMPT_RT as
well. The maximum latency is not currently guaranteed
by PREEMPT_RT.

ISSUES & OPTIMUN TO CONSIDER

Linux is a well-tuned Operating System for throughput-
limited applications, but it is not designed, neither
architected, to provide a deterministic response,
which is a key requirement for any real-time
application.

The response time of an application is the time interval
from when it receives a stimulus to when it actually
produces a result based on that stimulus.
Nondeterminism is frequently caused by algorithms
that do not run in constant time. For an Operating
System environment to accommodate a hard real-time
application, it must ensure that the application's
deadlines can always be met, which implies that all
actions within the Operating System itself must be
deterministic.

Real-time application developers are mostly focused
on interrupt latency, timer granularity, context-switch
time, system call overhead, and kernel preemptibility.
Linux does not implement interrupt priorities, and
most interrupts are blocked when Linux is handling an
interrupt, which is why the PREEMPT_RT patch has
proven itself as an asset to Linux over the years.

However, in order to truly guarantee deterministic
real-time performance, the underlying runtime system
that executes the real-time operations must be
completely independent from Linux. Isolation is
therefore a key requirement to achieve reliable and
secure operation of real-time applications alongside
Linux.

A genuine real-time Operating System is therefore
required to enable real-time behavior of Linux, and
indeed, not all real-time extensions are equal. To
ensure that user real-time tasks get privileged access
to the processor when needed, an RTOS must either
isolate the user real-time task from the kernel's own
processing, or alternatively, permit the user real-time
task to preempt most kernel operations. The latter is
then called a preemptible kernel.

 4

A fully preemptible real-time kernel allows specifying
which process takes priority over previously
uninterruptible Operating System processes, such as
spinlocks, or hardware and software interrupts. With
such a capability, one can then execute a time-critical
operation ahead of all others without delay. However,
just having a real-time kernel on its own will not
necessarily make the whole system real-time, as the
rest of the hardware and configuration must also be
set up for it. That is why, again, customers who plan to
use a Real Time patch for Linux have to be prudent to
budget both for an expert and a Distro licensing cost
from a company such as RedHat, Canonical, WindRiver
or Linutronix, to help them out as otherwise, real-time
could quickly become the gun to shoot yourself in the
foot with

ANOTHER WAY TO STREAMLINE LINUX

Within the scope of the Internet of Things, it is already
obvious that Software Defined Vehicles and Industry
4.0 automation are triggering the quest for hybrid
OSes being both in a row an embedded RTOS (Real
Time Operating System), as well as a computing GPOS
(General Purpose Operating System). Equally
challenging, Consumer based Smart IoT devices will
also require - quite often within a rather limited
hardware footprint – energy ultra-efficient OS based
solutions with up to decades long seamless support
and native security by design robustness to comply
with both newer applicable regulations, as well as
consumers’ increasing concerns for a holistic digital
protection.

For that purpose, HyperPanel Lab – a French based
computer science company founded in 1988 - has
created from scratch, over 25 years of self-financed
R&D, a 100% sovereign and fully copyrighted whole
new GPOS/RTOS breakthrough architecture.

The complete solution called HPL-OS4.0 comprises 2
layered containers being a software extension of the
von Neumann hardware architecture to the Operating
System itself. The upper layer deals with the
applications, while the lower one manages the
hardware – i.e.: thus handling both the I/O and the
telecom stacks. The latter is therefore acting as a
kernel having hands’ on all the drivers, communication
protocols and memory access. These 2 containers
communicate in an asynchronous manner using an
optimized messaging mechanism. They can therefore

run side by side on any multicore processors, or
separated on different physical IoT devices running as
if they were one single object dynamically sharing
hardware and functional resources at the edge, rather
than just data and files as usual.

The technology is leveraging the Turing Machine
principles as FSM (Finite State Machine) are
implemented for all the drivers and telecom protocols
which are then operated by the dedicated FSM engine.
Likewise hardware IP blocks implemented in an FPGA
or an ASIC, using an FSM based software architecture
enables an ultra-efficient interruption- based
monitoring of the kernel, thus allowing to drastically
lower latency, while matching as close as possible the
hardware fastest theoretical processing time.

HPL-OS4.0 suppresses all hardware to software
latencies means that whatever hardware event arises
(i.e.: an interrupt), its software processing is
immediately started (interrupt handler). Then, the
next processing steps (pipe) will also be started at the
next CPU cycle. To achieve such instant performances,
activity switching time has to be reduced by a ratio
between 100 to 1.000. Experiments and computations
carried on by HyperPanel Lab are showing between
400 % to 1.000 % benefits in terms of I/O throughputs
increase when using the exact same hardware
platform.

HPL-OS4.0 comes with 4 distinct levels of execution.
This allows HPL-OS4.0 to be fastest than most
incumbent RTOS, whilst still offering complete and
advanced GPOS type functionalities such as the
JavaScript interpreter and the HTML browser. These 4
levels of execution are spread into the two specifics
containers hereinabove detailed – i.e.: the lower one
overseeing the I/O and the telecoms, and the upper
one being in charge of managing and rendering the
applications.

The 4th level of execution is the GPOS itself. It is loaded
in the upper container that de facto comes with its
own dedicated real time control unit which can then
be interfaced with any third-party GPOS such as Linux,
based on POSIX API, thus allowing easy re-use of legacy
Apps and software developments, while still offering
real-time capabilities, lowest possible latency, as well
as preemption and determinism.

Indeed, to ultimately achieve the best-in-class co-
kernel possible implementation of Linux within HPL-
OS4.0, it shall be necessary to streamline the Linux

 5

drivers in order for the kernel to become an idle
renderer of the user experience as well as a versatile
API to run native Linux APPs, while leaving all I/O and
telecom management down to the RTOS beneath.

HYPERPANEL LAB’s 3-STEPS ROADMAP
TO ENABLE SEAMLESS REAL-TIME

MODE & DETERMINISM FOR LINUX

The dazzling success of the Raspberry Pi, Nucleo and
Arduino boards is clearly emphasizing the industry
growing appetence for ready to use off the shelves and
nearly plug-n-play hardware-based kits. In other
words, time to market and easiness of integration
often comes down to the ability of leveraging a no-
code stand-alone, kit based and stackable solution.

Based on this momentum, HyperPanel Lab has decided
to enter the Real Time embedded Linux ecosystem,
leveraging its hybrid 2 layers based RTOS, by means of
a 3-steps roadmap.

§ Step #1 – DUAL BOARD – a Stand-alone Nucleo

type Board running HPL-OS4.0 onto an STM32
MCU, together with Linux running onto a separate
Raspberry Pi type daughter card connected in
ethernet with the base Board beneath.

§ Step #2 – SINGLE BOARD / DUAL PROCESSOR – a

Single board running both the STM32 MCU fitted
with HPL-OS4.0 and a Broadcom or equivalent CPU
running Linux, both OSes having still their own
RAM. The boot and the Loader will be unified
under the HPL-OS4.0 scope.

§ Step #3 – SINGLE CHIP – MULTICORE

INTEGRATION – a Single chip ASIC based or SIP
implementation with in-depth intricating of the 2
OSes kernels, being HPL-OS4.0 and Linux, each one
running on a different core of the CPU. Beyond the
boot and the loader, the scheduler will also be
unified by HPL-OS4.0, and if needs be, the memory
could be shared between the 2 OS environments.

In any and all of the 3 above implementations, Linux
will be acting as a renderer for the Applications, thus
managing the screen output (which does not need real
time, nor determinism). But all of the other I/O and
telecom resources will be handled, in a truly
determinist and real-time ultra-fast latency manner,
by HPL-OS4.0.

In practice, as modern Linux device drivers are already
written in two halves, the top one serving as an
interrupt service routine, while the bottom half is
executed in a kernel thread to complete the driver's
work, HyperPanel Lab shall modify the relevant parts
to make sure drivers’ call for I/O and telecom
resources are simply redirected to HPL-OS4.0.

Doing so, HPL-OS4.0 will entirely take care of managing
efficiently every resource Linux needs, thus easing the
integration effort as Linux original Apps will be working
straight away using the driver modified Linux kernel.

In the last and ultimate Step #3 implementation, the
ability to run on a single multicore chip will require
HyperPanel Lab to also take over the scheduler of Linux
by replacing it. But even in that case, the application
development environment will remain Linux, thus
involving widespread tools like the compiler, linker,
and debugger.

In a nutshell, HyperPanel Lab is planning to push
forward the performances, stability and easiness of
integration boundaries of Linux co-kernel Real time
approach by first, a co-card solution, all the way
towards a co-chip fully integrated solution.

That solution to boost, secure and make embedded
Linux determinist leveraging HPL-OS4.0 disruptive
kernel architecture, is code named HYPER LINUX.

HYPER LINUX #1 - DUAL BOARD

HYPER LINUX #2 - SINGLE BOARD

HYPER LINUX #3 - SINGLE CHIP

HYPERPANEL LAB COPYRIGHT – Q1/2023

